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Abstract 

Retention of known geometry, with regard to mean 
atomic positions, has proved useful in the refinement of 
macromolecules. In structures with a paucity of 
diffraction data and large displacements of the atoms 
from their mean positions, it is also of value to restrain 
the thermal factors to be consistent with known 
stereochemistry. This paper presents a technique for 
accomplishing this by restraining the variances of the 
interatomic distributions (which are functions of the 
mean atomic positions and the thermal parameters) to 
suitably small values. This procedure allows meaningful 
anisotropic refinement of macromolecules to be carried 
out with low-resolution diffraction data. Anisotropic 
thermal parameters obtained in this way should prove 
useful in understanding the dynamics of the biological 
functions of macromolecules. 

Introduction 

One objective of single-crystal diffraction experiments 
is to determine the atomic structure as accurately as 
possible. This is generally accomplished by first 
obtaining an approximate atomic model by some 
means and then refining this model to bring the 
calculated diffraction pattern into close agreement with 
the observed pattern. To realize this goal, it is necessary 
that the atomic model should duplicate the time- 
average of the electron density present in the unit cells 
of the crystal. The electron distributions are usually 
represented by mean atomic positions upon which are 
superimposed thermal motion and positional disorder 
distributions. The magnitudes and orientations of these 
distributions are related to the dynamics of molecular 
motion. For biologically active macromolecules, these 
dynamics may, in turn, be related to biological 
functions of the molecules. 

When refining approximate atomic models of macro- 
molecules, it has been useful to retain known geometry 
during the course of the refinement (Konnert, 1976; 
Hendrickson & Konnert, 1979). In this way, the 
number of positional parameters to be determined by 
the intensity data can be effectively reduced and 
meaningful refinements can be carried out employing 
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very limited data sets. This retention of known 
geometry has generally been applied to the mean 
atomic positions. However, in structures possessing 
large vibrational amplitudes and other types of positio- 
nal disorder, it is valuable to consider relationships 
among thermal factors when restraining a model to be 
consistent with known geometry. Qualitatively, this 
means that if an atom undergoes large displacements 
from its mean position, then certain other atoms related 
by approximately known stereochemistry must also 
have related large displacements. 

This paper will describe some techniques for restrain- 
ing individual atom thermal parameters to values 
consistent with known geometry. In order that 
restraints might be imposed, it is necessary to relate the 
individual atom thermal factors which are the experi- 
mental variables to the interatomic distance distri- 
butions for those distances that are to be restrained. 
Busing & Levy (1964) discuss various joint distri- 
butions corresponding to simplified models for the 
thermal motion or disorder. Once the form of the joint 
distribution is assumed, the variance of the interatomic 
distance distribution is calculated. It is this variance 
that will be restrained to a suitably small value. A 
technique that may be employed for restraining such 
variances, V's, has been described as 'structure-factor 
least-squares refinement with subsidiary conditions' 
(Waser, 1963). 

The function minimized is of the form 

e =  Z w~(IFol~- IF~l~) ~ + Z wt v~ 
i 1 

+ sums for other subsidiary conditions, 

where V is the variance of the interatomic-distance 
distribution that is determined by the relative displace- 
ments of the two atoms defining interatomic distance l, 
i may range over all or just a portion of the intensity 
data, and l ranges over the distances to be restrained. 
The weight assigned to an observation is w. By asso- 
ciating the w's with standard deviations of the 
observations, the w's may be chosen such that the V's 
have the desired distribution. 

Formulated in this way, there is a one-to-one 
correspondence with the restrained parameter refine- 
ment previously described for atomic positions (Kon- 
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nert, 1976). Only the derivative matrix elements related 
to the restraint information need be calculated and 
stored to ensure rapid convergence, and the conjugate 
gradient method for solving linear equations is em- 
ployed to retain the advantages of the resulting sparse 
matrix. 

This paper will first describe some characteristics of 
the atomic distributions in macromolecules that indi- 
cate that a simplified model for the correlation of atomic 
motion has sufficient validity to be useful in limiting the 
number of thermal parameters to be determined by the 
diffraction data. Next, the general expression for the 
variance of interatomic-distance distributions will be 
given as a function of various moments of the assumed 
joint relative atomic-displacement distribution. Finally, 
some details and examples will be given for the cases of 
isotropic and anisotropic thermal parameters. 

A preliminary description of this work was presented 
at the 1978 IUCr Meeting (Konnert & Hendrickson, 
1978). 

Correlat ion o f  a tomic  m o t i o n  

For thermal restraints to be rigorously imposed, it 
would be necessary to know how the atomic motions 
are correlated. Without such detailed knowledge, some 
assumptions must be made. In order to discuss what 
assumptions might be appropriate, it is useful to 
consider atomic motion along interatomic vectors 
related to bond distances and bond angles. The root- 
mean-square (r.m.s.) amplitude for the variation with 
time of a covalently bonded distance is generally not 
greater than several hundredths of an ~ngstr6m. The 
r.m.s, displacements of atoms from their mean 
positions in crystals of biological macromolecules are 
of the order of tenths of fingstr6ms (0 .2-0.7  A). There- 
fore, the positional disorder, be it vibrational motion or 
otherwise, of the two atoms along the direction of the 
covalent bond is highly correlated. 

This circumstance may be approximately represen- 
ted by a joint distribution that assumes a high degree of 
positive correlation. In one such model, the variances of 
the joint distributions are expressed as functions of the 
differences of the variances of the individual atom 
distributions. Such a motion is termed the 'riding 
motion' approximation by Busing & Levy (1964). This 
model, which will be used here, is meant, in this 
application, to represent only large positive correlation 
of motion and not rigorous 'riding motion'. In this 
model, if u 2 is the mean__square amplitude of atom A in 
a given direction and u 2 is the same for atom B, then 
the mean square amplitude for the relative__displac___e- 
ments of the atoms in that direction is +(u ] - u2), 
whichever is positive. 

Once a form for the joint distribution has been 
assumed, it is possible to restrain the calculated 

variances for the covalently bonded distance distri- 
butions to suitably small values, usually about (0.03 
A)'. 

The r.m.s, amplitude for the variation with time of an 
interatomic distance which, along with two covalently 
bonded distances, is related to a bond angle is generally 
of the order of 0.1 A, as determined by gas electron- 
diffraction studies. Since this variation also is smaller 
than the average total displacement, the assumption of 
positive correlation is again useful. The variances of 
such interatomic distance distributions may be 
restrained to a suitably small value of about (0.1 A) 2. 

Variance  o f  d i s tance  distribution 

Let u be the instantaneous relative vector displacement 
of two atoms from their mean positions with a distri- 
bution of u given by p(u). Let the vector separation of 
the atoms be independent of the position of one of the 
atoms, B. Then the distribution of the second atom, A, 
will be represented by p(u). Consider a Cartesian coor- 
dinate system centered on the mean position of atom A 
with the x direction along the A - B  vector. 

Y 

T 

B ° A ~X 

The interatomic distance, d, will then be given by 

d =  [(d o + x) 2 + y2 + z211/2, 

where d o is the distance between the mean positions of 
the atoms. A Maclaurin expansion in x, y and z of d 
yields 

d = d o + x + y 2 / 2 d o  + z 2 / 2 d o  - x y 2 / 2 d  2 

- x z 2 / 2 d  2 + x 2 y 2 / 2 d 3  o + x 2 z2/2d3o 

_ y 4 / S d 3  ° _ z4/Sd3o _ y2  z2/4d3o + . . . .  ( 1 )  

The p(u) distributions considered will be symmetric 
with respect to inversion. In such cases 

d 2 = d 2 + x 2 +y2 + z 2 (2) 

and 
B 

cl = d o + y 2 / 2 d  o + z 2 / 2 d o  + x 2  y2/2d3o 

+ x 2 z 2 / 2 d  2 _ y2  z2/nd3o _ y 4 / 8 d 3  ° 

- z 4 / 8 d 3  o + . . . .  (3) 

An expression equivalent to (3) is presented by Busing 
& Levy (1964) as a basis for correcting bond-length 
estimates for thermal motion. It could be used to 
restrain d instead of d o to an 'ideal value'. 
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The desired variance is then 

V =  d 2 - ({l) 2 = x 2 - y2  z Z / 2 d Z  + yZ  z 2 / 2 d ~  _ x 2 y Z / d  ~ 

_ x ~ z 2 / d ~  + y 4 / 4 d ~  + z a / 4 d ~  ( - y 2 ) V 4 d g  

- ( z 2 ) V 4 d g  + . . . .  (4) 

In order to evaluate V, it is necessary to express p(u) 
as a function of the individual atom thermal 
parameters. 

For the 'riding motion' approximation it is possible 
to express the moments of p(u) in (4) in terms of the 
moments of the individual atom distributions. This is 
accomplished in Appendix A. In Appendix B the 
moments of the individual atom distributions are 
expressed in terms of the individual atom thermal 
parameters. 

For the 'riding motion' approximation to be 
physically possible, it is necessary that the distribution 
for o___ne of the atoms be broader in all directions; i .e. (U2A 

-- U z) have the same sign for all directions. This con- 
dition will always be met when isotropic thermal 
factors are employed. Extra constraints, however, 
would be necessary for this condition to be met in 
general with anisotropic thermal factors. This could be 
accomplished, and it might be desirable to do so. It has 
not been done in the work reported here. Instead, a set 
of variances for one-dimensional approximations 
corresponding to atomic motion along each of the six 
principal axes of the two thermal ellipsoids are 
examined. The variance related to each of these 
directions is less than or equal to the general 3D 
variance. For a case where one ellipsoid is greater in all 
directions, the near equivalence of the two represen- 
tations for the variance will be indicated, i.e. the sum of 
the 1D variances is nearly the same as the 3 D variance. 

Variance of distance distribution for one-dimensional 
atomic motion 

Let 0 be the angle between the interatomic vector for 
the mean positions and the direction of interest for 
relative atomic motion and u be the coordinate along 
that direction. The geometry is illustrated below. 

do / 0  

The interatomic distance, d, may be expressed as 

d = (d20 + 2d 0 u cos 0 + u2) v2. 

A Maclaurin series expansion in u of d yields 

d = d o + u cos 0 + u 2 sin 20/2d o - u 3 cos 0 sin 20/2dZ 

+ u4(4 sin 2 0 cos 2 0 -  sin 4 0)/8d3o . . . ,  (5) 

with the resulting variance, [d ---~ - (~2], being 

V = u 2 cos 2 0 -  (u2) 2 s i n 4 0 / 4 d  2 + u 4 sin 2 0(sin 2 0/4 

- cos 20)/d~. (6) 

Comparison of a 3 D distance variance with the sum of 
1 D variances 

As stated previously, the variance for the general three- 
dimensional distribution was not restrained in the 
anisotropic refinement to be discussed. In order to 
obtain some insight into how the 1D restraints that 
were used might be related to a general 3 D treatment, it 
is instructive to look at what (4) reduces to for the 
special case when the thermal ellipsoids for atoms A 
and B have axes coincident with the coordinate system 
of (4). The relative motion distribution, p(u), is then 
also Gaussian. Referring to Appendices A and B to 
evaluate the moments in (4), one obtains 

2 2 2 2 2 4 2 V =  A2x - A ]  A f f d  o - A ~ A f f d  o + A f f 2 d  o 

4 2 + A z / 2 d o  + . . . .  (7) 

The difference in mean square amplitudes__along the 
principal axes is denoted by A2u = (uZA - uBZ), where u 
= x, y, or z. 

This may be compared with a sum of the 1 D V's 
given by (6) for the case of Gaussian motion, whereby 

V u = A 2 cos 2 0 + A 4 sin 40/2d  2 

-- 3A~ cos 2 0sin 20/d  2 . . . .  (8) 

Evaluation at 0 = 0, 90 and 90 ° for motion along x, y 
and z, respectively, gives 

4 2 4 2 V x + Vy + V z = A 2 + A y / Z d  o + a z / Z d  o. (9) 

The cross terms by which (7) and (9) differ are not 
important in the usual circumstances. If all A's are of 
about the same size, then the first term in (7) will be 
dominant and the last four terms will be negligible. If A x 

is relatively small so that the first term is not dominant, 
then the cross terms will be small compared with one or 
both of the last two terms. This indicates that, for this 
special case, the variance estimate from the sum of 
three orthogonal 1 D variances is quite similar to that 
obtained from the general 3 D expression. It should be 
emphasized again, however, that for a general 3D 
treatment of 'riding motion', one atom must have 
greater thermal motion or disorder than the other atom 
in all directions. When this is not the case, an 
expression such as (7) cannot be written. 

Isotropic thermal-factor restraint 

For the case with isotropic thermal factors, the 
expression for V given in (4) simplifies with the relation- 
ships given in Appendices A and B to 

V =  A 2 -  A 4 / d ~  + . . .  ~_ A 2, (10) 
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where A 2 = + (u~ - -  u~)  = + ( B  A - B B ) / 8 n  2, whichever 
is positive. The derivatives necessary for the Taylor 
expansion of the variance in the least-squares cal- 
culation are of the form 

O V / c 3 B  A = _+ 1/8n 2. (11) 

Isotropic applications 

Isotropic thermal-factor restraints have been incor- 
porated into exported programs for stereochemically 
restrained refinement of macromolecules (Hendrickson 
& Konnert, 1979) and are now being used routinely in 
the refinements of a number of protein structures. One 
of the first applications to include these thermal-factor 
restraints was in the refinement of yeast phenylalanyl- 
tRNA. This structure including 1710 atoms has been 
refined to a conventional R of 21.5% for the 10 195 
reflections between 10 and 2.5 A. Positional restraints 
held the r.m.s, deviation from bond ideality to 0.04 A. 
The r.m.s, variance from thermal-factor restraints (10) 
ranged from (0.05 A) 2 for bond distances in the 
nucleotide bases to (0.11 A) 2 for bonding angle dis- 
tances in the ribose-phosphate backbone. Despite this 
close conformity of thermal factors to known stereo- 
chemistry, large and meaningful variation in B values is 
exhibited throughout the molecule as is illustrated in 
Fig. 1. The inclusion of this thermal-factor treatment in 
the refinement also greatly improved the clarity of dif- 
ference maps and permitted the identification of bound 

Fig. 1. A drawing of yeast phenylalanyl-tRNA representing the 
backbone isotropic thermal factors for different regions of the 
molecule. The region with 25 < B are represented with white; 
those with 20 < B < 25, with the lightest shading; those with 15 
< B < 20, with the medium shading; and those with B < 15, with 
the darkest. 

spermine molecules and magnesium hydrate ions 
(Quigley, Teeter & Rich, 1978). 

Anisotropic thermal-factor restraints 

For the refinement illustrated here, the principal axes 
directions of the ellipsoids have been specified by the 
atomic environment of each atom in order to reduce the 
number of parameters to be determined by the 
diffraction data. The directions were chosen so as to 
coincide as nearly as possible with expected directions 
of maximum and minimum displacements. For exam- 
ple, amplitudes are often greater perpendicular to bonds 
and the planes of planer groups than along covalent- 
bond directions. Consider an amide group: 

3 
t 
O--,-1 
II 

C 
/ \  

N C,  

Axis 1 of the oxygen atom may be chosen parallel to 
the N--Ca direction and axis 2 may be set by the cross 
product of the N--C and C - O  directions. The 
vibrational parameter describing motion in the direc- 
tion of axis 2, i .e. a direction perpendicular to the plane 
of the amide group, might be expected to assume a 
relatively large value during the course of the refine- 
ment. 

There will be three refinable thermal parameters per 
atom. However, due to the restraints to be placed 
upon them, the effective number of such parameters to 
be determined by the diffraction data will be consider- 
ably less. This reduction in parameters is most 
important when investigating macromolecules in which 
the atoms are undergoing large excursions from their 
mean positions and, as a result, the diffraction data are 
limited. 

Choosing inaccurate axes directions should result 
primarily in the ellipsoids for that atom being more 
nearly isotropic than might best fit the data. In fact, 
quite accurate axes assignments may be made from the 
considerations mentioned. This has been indicated by 
the refinement in this laboratory of an unsymmetric 
trimer, C60H42N4CI 3 both with stereochemical 
restraints and with conventional full-matrix least- 
squares (Konnert, Flippen-Anderson and Gilardi, 
1979). The restrained anisotropic refinement of the 109 
atoms converged in five cycles from an R of 28 to 
7.2% for the 6000 data with sin 0/2 < 0.55. Heavy- 
atom positions from an E map, idealized hydrogen- 
atom positions, and equal thermal values provided the 
starting point. The full-matrix refinement of the 67 non- 
hydrogen atoms converged to 7.6% with the hydro- 
gens placed in idealized positions with the same thermal 
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factors as the heavier atoms to which they were 
attached. Positional and thermal parameters obtained 
by the two methods are very similar. 

When the thermal factor for an atom is of the form 
e x p ( - - T F E ) ,  T F E  may be expressed in the following 
form for an anisotropic thermal ellipsoid. 

T F E = f l l ( c l . h ' )  2 + fl2(g2.h') 2 + fl3(g3.h') 2. (12) 

In this expression, h' is the reciprocal-lattice vector 

\to*/ 
transformed with the matrix G to a Cartesian coordin- 
ate system: 

h' = Gh. 

The unit vector in  the direc___~on of fli in the same system 
2 is the mean square ampli- is e. i. #i = 27c2 U2' where u i 

tude along that axis. 
Appendices A and B can be used to simplify the 

variance of the distance distribution from that given in 
(6)  to  

V v =  d2COS 2 0 + A4v (½ sin 4 0 -  3 cos 2 0sin 2 O)/d 2, (13) 

where 

A2= + (u2,,l - -  uv2.n), (14) 

whichever is positive. The values of the mean square 
displacements of the individual atoms in an arbitrary 
direction specified by v, a unit vector in the Cartesian 
system, will be necessary for the calculation of the 
variance in that direction. These are given by 

2 2zr2uv=fl ,(v.e,)  2 + fl2(v.ez) 2 + fl3(v.e3) 2. (15) 

The desired derivatives to be used in the least- 
squares procedure are of the form: 

¢~V (6i, A • V) 2 2A 2 
- -  + [COS 2 0 ÷ (½ sin 4 0 

c~Pi, A - 2 ~  2 do 

- 3 c o s  2 0 s i n  2 0) ] ;  ( 1 6 )  

~V (I~J'B'V)2 [cos 2 0 2A2 1 
~#j ,B  - -  ¥ 27Z2 +--~-0 (] sin4 0 

- 3 cos 2 0 sin 2 0)]. 

The upper sign on the right hand side of these equations 
holds if u 2 > u 2, where A and B correspond to the 
atoms involved in the distance of interest. 

It is evident that the same general procedure could be 
employed without specifying the ellipsoid orientations. 
There would then be the usual six thermal parameters 
per atom. 

The stereochemical restraints on the mean atomic 
positions might be used as a basis for a more formal 

method for determining the initial orientations of the 
ellipsoids. Briefly stated, this might be accomplished 
with a restrained-parameter least-squares technique in 
which a directional force is applied to the atoms in the 
molecule. The atomic displacements permitted by the 
known stereochemistry for such a force may be 
calculated. By applying a distorting force in six dif- 
ferent directions and obtaining the related atomic shifts, 
it should be possible to approximate the parameters for 
the associated constant-probability ellipsoids. The 
orientations of these ellipsoids could be employed to 
initiate refinement. 

It is also possible to examine the relative amplitudes 
of atoms in approximately rigid groups (Schomaker & 
Trueblood, 1968), restrain the thermal parameters to be 
consistent with group motion, and make improved axes 
assignments during the course of the refinement. This is 
accomplished by fitting at the beginning of each 
refinement cycle the thermal factors that define a group 
motion to the anisotropic thermal factors for the atoms 
of an approximately rigid group. The fli's in (12) may 
then be restrained with a set of subsidiary conditions to 
remain consistent to within desired limits with the 
obtained group motion parameters. The ellipsoid axes 
directions for the atoms in this group may also be 
reassigned to be consistent with those for group 
motion. This is now being done in this laboratory. 

A n i s o t r o p i c  a p p l i c a t i o n  

Data from a carp muscle parvalbumin, a calcium- 
binding protein that has been previously refined by 
other techniques (Moews & Kretsinger, 1975), have 
been employed for test calculations. With the inclusion 
of 152 solvent atoms, the 2892 positional parameters 

N~ 
Gs 

Ga N 

,.,~, C~~64) 

Gs G/3 C 

Fig. 2. An ORTEP drawing (Johnson, 1965) at the 50% 
probability level for 2% of the carp calcium-binding parvalbumin 
molecule at R = 9.8%. 
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and the 2892 thermal parameters for the 952 atoms 
were simultaneously refined. 5100 diffraction data with 
d spacings between 5 and 1.8 A were employed. The 
structure was refined to a conventional R value of 
9-8%. A portion of the structure is illustrated in Fig. 2. 
The average value for the variances (equation 7) was 
(0.03 A) 2 at this stage. Visual inspection of the 
constant-probability ellipsoids in Fig. 2 reveals the near 
equivalence for the ellipsoids of bonded atoms along 
the bond direction. Likewise, the ellipsoids of next- 
nearest neighbor atoms are very similar along the inter- 
atomic vector. 

Next, x 2 y2 will be determined. Let y = I. r, and pro- 
ceeding as before: 

x 2 y  2 =  fp(u) f (u .k  + s .k)2(u.I  + s.I) 2pB(s)dsdu 

= f p(u) f [(u. k) 2 (u.I) 2 + 2(u.  k) 2 (u.I)(s .I)  

+ (u. k) 2 (s. I) 2 + 2(u.  k)(s .  k)(u.  !) 2 

+ 4 ( u . k ) ( s . k ) ( u . l ) ( s . I )  + 2 ( u . k ) ( s . k ) ( s . I )  2 

+ ( s .k )  2 (u . l )  2 + 2 ( s .k )  2 (u . l ) ( s . I )  

+ (S. k) 2 (s .  I) 2] PB(S) ds du 

We thank Dr J. Karle of this laboratory for helpful 
discussions. 

A P P E N D I X  A 

Evaluation of  the moments  of  the relative displacement 
distribution for the 'riding motion' approximation 

The approach employed here is very similar to that 
employed by Busing & Levy (1964). Given two 
normalized distributions, p(r) for the distribution of the 
relative displacements of atom A and atom B and ps(r) 
for the distribution of atom B, each with centroid at r = 
0, their convolution is 

pA(r) = f ps(s) p( r - -  s) ds, 

which gives the distribution of atom A when it is 'riding' 
along with atom B. Let x be given b y x  = r. k, where k 
is a unit vector. The value for x 2 is obtained by 
averaging over the convolution 

x 2 = f (r .k) 2 pA(r) dr 

= f (r .k)  2 f pB(s) p ( r -  s )ds  dr. 

It is now convenient to change variables such that u = r 
- s and r = u + s. The relevant Jacobian for the change 
of variables is 

] Ss /Ss  Ss /Su[  

J = 8r/Os &lOu  

Therefore, 

and 

1 

x 2 =  fp(u) f (s .k  + u.k)2 ps(s) ds du 

= f p(u) f [(s.k) 2 + 2(s. k)(u.k) 

+ (U. k) 2] ps(s) ds du 

= x  z + 2 x  x, B + x 2 n = x  2 + x~ 

: xq  - x q  

= x2 y 2 + x2 y2s + x ~ y  2 + x~y~ .  

Therefore, 

X 2 y2 2 2 (X~ 2 2 = x A y  ~ -- - - x s ) y  s - ( y ~ - - y ~ ) x ~  _ xsys.2 2 

A fourth moment, y4, will be determined in the same 
manner: 

y4 = f p(u) f (u.! + s . l )  4 PB(S) ds  du  

= f p(u) f [(u.I) 4 + 4(u.l) 3 (s.I) 

+ 6(u.  I) 2 (s. I) 2 + 4(u .  i)(s.  i) 3 

+ (s . l )4]ds  du  

= y4 + 6y2 y~ + y~. 

This gives 

y4 = y4 _ 6(y2 2 2 _ y~) y ~ _  y4. 

Thus, all of the moments in (4) may be expressed in 
terms of the moments of the individual atom distri- 
butions. Note, again, that for all of the above moments 
to have physical significance, the distribution of atom A 
must be broader in all directions than that for atom B. 

The expression for the variance in terms of the 
moments of the individual atom distributions is 

1 
V = x 2 - - x  2 + - ~ o [ y ] z ~ - - y ~ z ~  +Y2sZ~--z~Y~] 

m m 

4 Y~ -- ( 4  - x2s) Y~ -- (Y~ -- Y~) x~ -- x~  y~] 

1 
4 - ( 4  - x 2)  4 - - 4 )  - 4 4 1  d 2 

M 

+ ~ [y4 a _ (y~)2 + 5(3,2)2_ y~ _ 4)2 y2] 

1 [z--~- (z-~) 2 + 5(7]) 2 --z--~--4z 2 z2]. 
4d2o 
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APPENDIX B 

Evaluation of the moments of the individual atom 
distributions in terms of the thermal-factor parameters 

Let uvw be the reference Cartesian system for the 
anisotropic representation, tp(u, v, w), for the atom 
displacements of an atom. Then, 

~O(u,v,w ) = [ 1/(2703/2 O" u O" v O" w] exp (-- u E / 2 t 7 2  - -  V2/20 "2 

- -  W 2 / 2 0 2 ) .  

Let Txu, Txv and Txw be the direction cosines of a 
direction x relative to u, v and w for atom A. Then, x -- 
UTxu + VTx, + WTxw and 

x 2 = f (UTxu + VTxv + WTxw) 2 tp(u, v, w) du dv dw 

= a 2 Tzxu + a 2 Tzxv + a 2 Tzxw . 

These o's are directly related to the anisotropic thermal 
factors given in (15) that are the refined parameters 

2 Cru × 27~2 = f lu" 

A fourth moment may be evaluated: 

- -  4 6(0.2 2 2 2 4 4 4 Txw) + Tx u Tx v x~ = 3(0"4u T4u + crv Txv + aw av 

2 2 2 2 2 T2xv 2 + au a2w Txu T.w + a. aw Txw). 

In the same manner, the mixed moments may be 
evaluated: 

4 2 2 4 2 2 x 2 y2 = 3(a4 T 2  TEu + av Tx ~ Ty v + tTwTxwTyw) 

A RESTRAINED-PARAMETER THERMAL-FACTOR REFINEMENT PROCEDURE 

2 2 2 2 2 T 2 + au av(Txu Tyv + Txv yu 
2 2 2 T 2 + 4 T x u T y v T x v T r u ) + a u a w ( T x u  yw 

+ T~wT~u+aTxuTy~TyuT,~) 
2 2 2 2 2 Z 2 + av aw(Txv Tyw + Txw yv 

+ 4Vx. r ~  Txw T.). 
With these relationships, the variance given in (4) is 

related to the anisotropic thermal parameters being 
refined. 
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Abstract 

Three different space groups, C2/c, C2 and Cc, have 
been reported for the room-temperature form of the 
rare-earth orthoniobates, LnNbO 4 (Ln = La, Nd). They 
belong to different point groups: 2/m, 2 and m, 
respectively. By means of convergent-beam electron 
diffraction, the point group has been determined to be 
2/m in the present study. Therefore the true space 
group must be C2/c. 

0567-7394/80/030350-03501.00 

It has been reported that the rare-earth orthoniobates, 
LnNbO 4 (Ln=  La, Nd), transform from the high- 
temperature tetragonal form with space group I4a/a to 
the room-temperature monoclinic form with space 
group C2 (Komkov, 1959; Stubican, 1964). Recently, 
however, Jeitschko, Sleight, McClellan & Weiher 
(1976) suggested that the point group of the room- 
temperature form is centrosymmetric, 2/m, and Brix- 
Her, Whitney, Zumsteg & Jones (1977) reported that 
they transform from I4t /a  to C2/c. On the other hand, 
Tsunekawa, Takei & Ishigame (1977) proposed from a 
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